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Relations determining heat t r an s f e r  during condensation of vapor  on a je t  with considerat ion 
of the thermal  res is tance  to mass  t r an s f e r  of vapor  toward the jet  were  obtained and the re -  
sults of calculations a re  presented.  

Je t  condensers  and water  hea ters  a re  well-known and have been used for a long t ime in engineering,  
but the present ly  accumulated exper imenta l  and theore t ica l  investigations on vapor  condensation on a je t  
a re  ra the r  scanty and pertain mainly to condensation of water  vapor.  

The relat ion obtained by S. S. Kutateladze [1] for  determining the magnitude of re la t ive underheating 
is well-known: 

r 

(~av Tv--raVTv _ To = 4 ~ e x p  [--g~/(X)] (z~'l (1) 

i = 1  

However,  this express ion  was obtained on the assumption that the surface  t empera tu re  of the jet  is 
equal to the vapor t empera ture ,  i .e. ,  that the res is tance  to mass  t r an s f e r  of the vapor  toward the jet  su r -  
face can be neglected. 

For  working bodies with low thermal  conductivity and for  smal l  specific volumes of vapor this assumption 
is valid with sufficient accuracy  and the calculations made for water  vapor  agree  sa t i s fac tor i ly  with the 
exper imenta l  resul ts .  Fo r  working bodies with a high the rmal  conductivity or  for  large specific volumes 
of vapor  the thermal  res i s tance  to m a s s t r a n s f e r b e c o m e s  comparable  with res i s tance  to heat t r a n s f e r  into 
the inner  layers  of the jet  and under cer ta in  conditions is decis ive.  

In connection with the dec rease  of the c ross  section on approach to the jet  surface  the vapor  expands, 
its t empera tu re  drops,  and the veloci ty inc reases .  However,  like the process  of expansion in a convergent  
nozzle the velocity of the vapor  cannot increase  above the velocity of sound and the flow rate of vapor  can- 
not be g r e a t e r  than the cr i t ica l .  As a consequence of this,  at  a surface  t empera tu re  of the je t  equal to or  
g rea t e r  than the cr i t ica l  a c r i t i ca l  vapor  flow is es tabl ished in the immediate  vicinity of the surface ,  the 
vapor  velocity is equal to the velocity of sound, and the vapor t empera tu re  and its flow rate a re  equal re -  
spect ively to T c r  and Jcr  = fgrv)" For  a jet  surface  t empera tu re  g r ea t e r  than T c r  a subcri t ical  vapor 
flow is establ ished near  the je t  surface  and in this case the vapor  flow rate is a function of the stagnation 
t empera tu re  of the vapor  and the je t  surface  t empera ture :  

i = f (Tv T~ui). 

Thus in a general  form, over  the length of the jet  there  is: 

I. A section with T s u r  -< T c r  and constant specific vapor  flow rate j =Jc r  =J(Tv)- 

II. A section with Tsu r > T c r  and specific vapor  flow rate j =f(T v, Tsu r) for  j =Jc r  go (Tv, Tsur) .  

The t empera tu re  at  any point of the je t  is determined by the equation of the rma l  conductivity 

WoC v O T = __c92T + __1 __c)T (2) 
~' + ~'t OX Or 2 r Or " 
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Fig.  1. Funct ion f ~ z , / p e , )  = ~ ' s u r - T 0 ) / K  
for  the sec t ion  with a c r i t i c a l  v a p o r  flow 
n e a r  the je t  s u r f a c e .  

In t roduc ing  the d i m e n s i o n l e s s  coo rd ina t e s  and t e m -  
p e r a t u r e  Y = r / r0 ,  X = X/r0 ,and  T = T / T v ,  we obtain 

rowoC7 aT- O2T - 1 a ~  
_ = _ + - = - . - -  ( 3 )  

)" + )~t OX Or 2 r Or " 

F o r  sec t ion  I the boundary  condi t ions  a r e  T = T o for  
X = 0 and q = q c r  for  u = 1, where  q is the spec i f ic  quant i ty  
of heat  l ibe ra ted  
je t  s u r f a c e .  

Solving (3) 
in [1] X and X t to  

n = l  

dur ing  condensa t ion  of the vapo r  on the 

for  these  condi t ions  and a s s u m i n g  like 
be independent  of X and u we find 

2qcr X - I - ~ r ~  { 1 
TvWoC? Tv ()~+~t) - ~ r  - -0 .25 

w h e r e  J0 (fin Y) is a z e r o - o r d e r  B e s s e I  function and the fin a r e  posi t ive  roo t s  of the equat ion J1 (fin) = 0. 

I n t roduc ing  the nota t ions  K = qcrd0/Tv(X +Xt) and P c '  = Pe / (1  +)tt/X), a f t e r  e l e m e n t a r y  t r a n s f o r -  
ma t ions  we obtain the r e l a t ion  for  d e t e r m i n i n g  the t e m p e r a t u r e  at  any  point  of the je t  in sec t ion  I in the 
f o r m  

Z [  / - -  2 exp --262 - ~]S0 (~,~) l" 
n ~ l  

(4) 

The je t  su r f a c e  t e m p e r a t u r e  (~ = 1) is  

x 1 { 
Tsu r = T  o + 2 K ~ + T K  0.25 

X 1 X, 
--2~n-KT;-_, -W2-- + �9 

The va lues  of f ( X / P e ' )  a r e  p r e s e n t e d  in Fig.  1. The bounda ry  of sec t ion  I Xc r  can  be d e t e r m i n e d  
f r o m  the condi t ion Tsu  r = T c r  fo r  given K and T 0. 

The a v e r a g e  t e m p e r a t u r e  in any  c r o s s  sec t ion  
1 

~er = 2 S T r dr = To + 2K 
Pc' 

0 

This  s a m e  e x p r e s s i o n  can be obtained d i r e c t l y  f r o m  the heat  ba lance  on the jet .  The a v e r a g e  r e l a -  
t ive underhea t ing  of the je t  in sec t ion  I is 

ffIa v = 1 - -  2 K X (6) 
l - - T 0 - "  Pc' 

F o r  sec t ion  II the b o u n d a r y  condi t ion is 

~t) aT I ] (~ + ~ . . . .  - q = o, ~,h~,e q :  qcr ]o---/ (7) 

In the g e n e r a l  f o r m  q is a non l inea r  funct ion of the vapo r  t e m p e r a t u r e  and jet  su r f ace  t e m p e r a t u r e .  
The solut ion of the equat ion of t h e r m a l  conduc t iv i ty  with a non l inea r  boundary  condi t ion is e x t r e m e l y  diff i -  
cult .  Only s e v e r a l  exac t  so lut ions  of p r o b l e m s  of t h e r m a l  conduc t iv i ty  with non l inea r  heat  t r a n s f e r  a r e  
known. In pa r t i cu l a r ,  the case  of a semibounded  sol id with heat  t r a n s f e r  by radia t ion  is c o n s i d e r e d  in [2]. 
At the s a m e  t ime,  for  sma l l  t e m p e r a t u r e  d rops  the function q can be app rox ima ted  with a deg ree  of a c c u -  
r a c y  suff ic ient  for  d e t e r m i n i n g  underhea t ing  by  the l inear  dependence  
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Fig. 2. Coefficient  ~i for the f i r s t  t e r m  of the s e r i e s  (a) 
and for  the second t e r m  of the s e r i e s  (b): 1) ( T v - T c r )  
/ (Tv-TO)  =0.1; 2)0 .2 ;  3 )0 ,3 ;  4)0 .4 ;  5 ) 0 . 5 ;  6)0 ,6 ;  7) 

0.7; 8) 0.8; 9) 0.9, 

Tv - -  Tsut: 

q : q e r  Tv__Te t "  

Introducing the notation ~ = (T v -  T ) / ( T v - T 0 ) ,  we obtain the equation of t h e r m a l  conductivity for 
sect ion II in the f rom 

Pe' 00 020 , 1 00, 

2 0 (X  - -  Xcr) O? r Or 
(8) 

The appropr i a t e ly  t r a n s f o r m e d  boundary condition is 

aO I + K 7=1= (9) O~ 7=, 2(1--Ter) ~ O. 

We will seek  the solution in the form $ =exp [-2o~ 2 ( X - X c r ) / P e ' ]  ~o (~). 

Substituting this express ion  into the initial one, we obtain the equation for de te rmin ing  ~o ~):  

~ (7)+ 0~  (~ l o~(7) = 0, 

which r ep re sen t s  a z e r o - o r d e r  B es s e l  equation. Since ~ is a finite quantity when u = 0, its solution of the 
second kind (Neuman function) is d iscarded and the solution is obtained in the fo rm of a s e r i e s  

Substi tut ing (10) into (9), we obtain the express ion  for de te rmin ing  the coeff icients  t~i: 

K - - g 0 ( a i )  -- 0. 
aiJ1 (al) - - - 2  (1 - -  Tot ) 

The numer ica l  values of ~i ,  jus t  as  of fin' a re  encountered often in the l i t e ra ture .  
values  of these coefficients  for six m e m b e r s  of the s e r i e s  a r e  presented  in [2]. 

(11) 

For  example ,  the 
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Fig. 3. Average relative underheating for: a) 
X /Pc '  = I x  10-2; b) X/Pc '  =3 x 10-2; c) X/Pe '  
=5 x 10-2; 1) K/(1-T~cr ) =1; 2) 5; 3) 10; 4) 
20; 5)30; 6)50;  7)100; 8 )~ ;  I ) c r i t i c a l  
vapor flow over entire length of jet; ID cr i t ical  
and subcri t ical  vapor flow over length of jet. 

The boundary conditions for section II is the relation obtained from (4) and (10) for X =Xcr  

~0Ir= 1 K {2 Xc-r L I } 2 - - 0 , 1 2 5  
1 - - ~  o Pc' " - 4 -  

o~ 

Pe' ] J~ - -  : = S o ( ~ , ; )  A .  

n = l  i ~ l  

From here we determine 
l 

0 

2(1--Tcr ~ ' 

After integration and appropriate t ransformation we obtain the expression for determining the tern- 
perature at any point of the jet in section II: 

=4 1--TC, 2exp[_2  X--Xo, ] Po' 
i = l  

J0 (~f) 

• [ -- l (12) 1@ 2cq(1--Tcr~ 2 , 
K 

where 

*~ = 1 K /2 ) (er  1 - -  "Fer 
1--T-~ ( Pe' +0.125@ K 

co 

-- exp -- 2[~ R2 l~ 2 - 
. = l  ,'-~ ~--~]) �9 

2 
(Zi 
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The values of ~b i for the f i rs t  two t e rms  of the se r ies  are  presented in Fig. 2 as the function K/(1-T0)  

for different ratios (T v -  Tcr ) / (T  v -  To). 

The average relative underheating in section II of the jet is 

| Qo 

0 i ~ l  

x 
o~,{1, �9 q- [2cQ(1--Ter) ]  2 } K  

(13) 

Obviously from this relation when K - -  ~o we can obtain as a par t icular  case the Kutateladze formula for a 
constant jet diameter .  

As calculations by 03) show, when X / P c '  >1 x 10 -2 we can res t r i c t  ourselves to two t e rms  of the 
ser ies  with a sufficient degree of accuracy .  

The results  of calculating the average relative underheating are  presented in Fig. 3a, b, c as a func- 
tion of {T v - T c r ) / ( T  v - T 0) for different K / ( 1 - T c r  ) and X / P c ' .  As we see from the graphs, the effect 
of the initial jet tempera ture  on the average underheating is considerable at a cr i t ica l  vapor flow near  the 
jet surface,  but the effect of T o diminishes as the section with the cr i t ical  vapor flow decreases .  It is also 
obvious that when K / ( 1 - T c r )  > 100 the effect of this pa ramete r  also pract ical ly  disappears .  

Calculations show that for water  vapor even at a vapor tempera ture  of 40~ the value of K / ( 1 - T c r )  is 
considerably g rea te r  than 100. Therefore ,  for water  the average relative underheating is always a function 
only of velocity and the geometr ic  pa ramete r s  of the jet. For  m e r c u r y  and potassium vapors  the effect of 
K / ( 1 - T c r )  must  be taken into account at a vapor tempera ture  to 500 and 850~ respectively.  

When using a jet apparatus as a heater  of the working body the relative underheating of the jet is a 
charac te r i s t ic  of the quality of operation of the apparatus,  but with its use for vapor condensation the heat- 
t r ans fe r  coefficient is such a charac ter i s t ic .  

F rom the heat balance on the jet we can obtain af ter  e lementary  t ransformat ions  the average heat-  
t r ans fe r  coefficient for the section 

k = - -  )~ + A t  Pc' ln6a v 
2do X 

We will analyze the change of the hea t - t r ans fe r  coefficient upon a change of X / P c '  in both sections at 
constant t empera tures  of the vapor (K = const) and of the jet at the inlet (T 0 = const). 

When X-< Xcr,  expanding the value of [n$I  v in a ser ies  and differentiating, we obtain 

] 

Consequently, in this section the average hea t - t r ans fe r  coefficient increases  with an increase  of X 
/Pe '. 

When X > Xcr ,  assuming for simplifying the calculations the average relative underheating to be equal 
to the f i rs t  t e rm of the se r ies  in Eq. (13), we obtain 

k'-" ~+)~ . Pe' 
2d o -~ 

Taking into account that 

4~1 _ K Xcr 
- - ' 7  

1 - -  T O P e '  
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and r ep resen t ing  In of this value in the fo rm of a s e r i e s ,  a f t e r  different ia t ion we have 

dk 

d( 
~-b~t / Pe' ~2 

2do 

- - 2  - - - - -  
Pe' Pe' 

We see f rom the last  re la t ion that when K / (1 -T0 )  >-c~ (a~nax =2.4048) the value dk /d (X/Pe ' )  < 0 
and consequent ly  an inc rease  of X / P e '  in this sect ion leads to a dec r ea se  of the ave rage  h e a t - t r a n s f e r  coef-  
f icient for  the ent i re  jet .  

Thus the ana lys i s  pe rm i t s  the conclusion that in the ma jo r i ty  of p rac t i ca l ly  possible  ca se s  of in te res t  
for  appl icat ion the m a x i m u m  possible  h e a t - t r a n s f e r  coeff icient  is at tained when X ~ Xcr  and a fu r ther  in-  
c r e a s e  of X leads to a dec r ea s e  of the h e a t - t r a n s f e r  coefficient .  

A dec r ea s e  of the h e a t - t r a n s f e r  coeff icient  with an inc rease  of length was obtained in expe r imen t s  
conducted on wa te r  vapor  by Zinger  [3], s ince they were  conducted when X > Xcr .  

N O T A T I O N  

k 

J 
q 

T v and T c r  
T, Tsu r ,  and Tav  

r o and d o 
X 

C and y 

)v and )~t 
Pe = (w0CT/),) d o 
w0 

is the re la t ive  underheat ing of jet; 
is the heat  t r a n s f e r  coefficient;  
is the specif ic  vapor  flow rate  r e f e r r e d  to the je t  sur face ;  
is the specif ic  quanti ty of heat  l iberated during condensation of vapor  on the jet  sur face ;  
a r e  the stagnation t e m p e r a t u r e  and c r i t i ca l  t e m p e r a t u r e ,  ~ 
a r e  the t e m p e r a t u r e  of jet  r e spec t ive ly  at  any point, of the sur face ,  and the mean-  
i n t e g r a l i n  c r o s s  section,  ~ 
a r e  the je t  radius and d iamete r ;  
is the coordinate  along the jet; 
a r e  the heat  capaci ty  and specif ic  weight of working body of jet; 
a r e  the t h e r m a l  conductivity and turbulent  t he rma l  conductivity of working body of jet; 
is the Pec le t  number ;  
is the veloci ty  of jet .  

1 .  

2. 

3. 

4. 
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