HEAT TRANSFER DURING CONDENSATION OF
VAPORS ON A JET

V. P. Gavrikov UDC 532.529.5:536.423.4

Relations determining heat transfer during condensation of vapor on a jet with consideration
of the thermal resistance to mass transfer of vapor toward the jet were obtained and the re~
sults of calculations are presented.

Jet condensers and water heaters are well-known and have been used for a long time in engineering,
but the presently accumulated experimental and theoretical investigations on vapor condensation on a jet
are rather scanty and pertain mainly to condensation of water vapor.

The relation obtained by S. S. Kutateladze [1] for determining the magnitude of relative underheating
is well-known:
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However, this expression was obtained on the assumption that the surface temperature of the jet is
equal to the vapor temperature, i.e., that the resistance to mass transfer of the vapor toward the jet sur-
face can be neglected.

For working bodies with low thermal conductivity and for small specific volumes of vapor this assumption
is valid with sufficient accuracy and the calculations made for water vapor agree satisfactorily with the
experimental results. For working bodies with a high thermal conduectivity or for large specific volumes
of vapor the thermal resistance to masstransferbecomes comparable with resistance to heat transfer into
the inner layers of the jet and under certain conditions is decisive.

In connection with the decrease of the cross section on approach to the jet surface the vapor expands,
its temperature drops, and the velocity increases. However, like the process of expansion in a convergent
nozzle the velocity of the vapor cannot increase above the velocity of sound and the flow rate of vapor can-
not be greater than the critical. As a consequence of this, at a surface temperature of the jet equal to or
greater than the critical a critical vapor flow is established in the immediate vicinity of the surface, the
vapor velocity is equal to the velocity of sound, and the vapor temperature and its flow rate are equal re-
spectively to T, and j,,. = f(Ty). For a jet surface temperature greater than Ty, a subcritical vapor
flow is established near the jet surface and in this case the vapor flow rate is a function of the stagnation
temperature of the vapor and the jet surface temperature;

i= f(Tv Tsur)'
Thus in a general form, over the length of the jet there is:
I. A section with Ty, = T, and constant specific vapor flow rate j =j,,. =j(T,).
II. A section with Tgy > T, and specific vapor flow rate j =f(Ty, Tg,,) for j =jer ¢ (Ty, Tour):
The temperature at any point of the jet is determined by the equation of thermal conductivity
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f(a’%) Introducing the dimensionless coordinates and tem-
1 perature T =r/r;, X =X/rg,and T =T/Ty, we obtain
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% X =0and q =qep for T =1, where q is the specific quantity
004 of heat liberated during condensation of the vapor on the
/ jet surface.
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where Jy (ﬁn?) is a zero-order Bessel function and the By, are positive roots of the equation Ji(Bn) =0
Introducing the notations K = qcrdO/TvO‘ +At) and Pe'= Pe/(1 +A¢/A), after elementary transfor-

mations we obtain the relation for determining the temperature at any point of the jet in section I in the
form

T = 70+2K~—§;,— + % K{éﬂ—o-%
—2 E exp [—Qﬁi X ] '2{0 (B, l @)
s Pe | o (o) |
The jet surface temperaturé {r=1)is
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—Eexp[——?ﬁn } =T+ 4 X ) 6)

The values of f(X/Pe ') are presented in F1g 1. The boundary of section I S-(c:r can be determined
from the condition T T r for given K and T,.

The average temperature in any cross section
1
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This same expression can be obtained directly from the heat balance on the jet. The average rela-
tive underheating of the jet in section I is
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Vpy=1—2 2. . 6
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For section II the boundary condition is
(- 7»1:)*—* —q =0, where q = g¢; ()
or r=ro Jer

In the general form q is a nonlinear function of the vapor temperature and jet surface temperature.
The solution of the equation of thermal conductivity with a nonlinear boundary condition is extremely diffi-
cult. Only several exact solutions of problems of thermal conductivity with nonlinear heat transfer are
known. In particular, the case of a semibounded solid with heat transfer by radiation is considered in [2].
At the same time, for small temperature drops the function g can be approximated with a degree of accu-
racy sufficient for determining underheating by the linear dependence

871



¢, = "1

g6
a
a2
08
04
b
0 4 8 2z 6 KT

Fig. 2. Coefficient ¢; for the first term of the series (a)
and for the second term of the series (b): 1) (Ty—Ter)
/(Ty=To) =0.1; 2) 0.2 3) 0.3; 4) 0.4; 5) 0.5; 6) 0.6; 7)
0.7; 8) 0.8; 9) 0.9

q:qcr_Tz__Tm
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Introducing the notation & =

(Ty— T/ (TV~T0), we obtain the equation of thermal conductivity for
section II in the from
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The appropriately transformed boundary condition is

w K

or Jr=1 2(1 —Ty) =

We will seek the solution in the form ¢ =exp [—20? X- Xop/Pe'l o (r).

Substituting this expression into the initial one, we obtain the equation for determining ¢ (r):

ot () + -2 "“P(’) e SR
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which represents a zero-order Bessel equation. Since ¢ is a finite quantity when T =0, its solution of the

second kind (Neuman function) is discarded and the solution is obtained in the form of a series

o= $exp[ 2ot X Ter (o) 4 (10)
[Pe’ J
i=1
Substituting (10) into (9), we obtain the expression for determining the coefficients o;:
K
I (@;) — ———————Jo () = 0. (11)
& l(al) 2(1__7,01.) 0( )

The numerical values of aj, justas of ﬂn, are encountered often in the literature. For example, the
values of these coefficients for six members of the series are presented in [2].
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The boundary conditions for section II is the relation obtained from 4) and (10) for X =3_<cr
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From here we determine
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After integration and appropriate transformation we obtain the expression for determining the tem-
perature at any point of the jet in section II:
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The values of y; for the first two terms of the series are presented in Fig, 2 as the function K/(l—TO)
for different ratios (Tv_Tcr)/(Tv_To)'

The average relative underheating in section II of the jet is
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Obviously from this relation when K— « we can obtain as a particular case the Kutateladze formula for a
constant jet diameter.

As calculations by (13) show, when y(/Pe' >1 X 10~% we can restrict ourselves to two terms of the
series with a sufficient degree of accuracy.

The results of calculating the average relative underheating are presentedin Fig. 3a, b, c as a func~
tion of (T, ——TCI,)/('I‘V - T,) for different K/(l—"fcr) and X/Pe'. As we see from the graphs, the effect
of the initial jet temperature on the average underheating is considerable at a critical vapor flow near the
jet surface, but the effect of To diminishes as the section with the critical vapor flow decreases. It is also
obvious that when K/ (1—chr) > 100 the effect of this parameter also practically disappears.

Calculations show that for water vapor even at a vapor temperature of 40°C the value of K/(I—Tcr) is
considerably greater than 100. Therefore, for water the average relative underheating is always a function
only of velocity and the geometric parameters of the jet. For mercury and potassium vapors the effect of
K/ (1—-Tcr) must be taken into account at a vapor temperature to 500 and 850°K respectively.

When using a jet apparatus as a heater of the working body the relative underheating of the jet is a
characteristic of the quality of operation of the apparatus, but with its use for vapor condensation the heat-
transfer coefficient is such a characteristic.

From the heat balance on the jet we can obtain after elementary transformations the average heat-
transfer coefficient for the section
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We will analyze the change of the heat-transfer coefficient upon a change of X/Pe' in both sections at
constant temperatures of the vapor (K =const) and of the jet at the inlet (T =const).

When X = icr’ expanding the value of In ‘%v in a series and differentiating, we obtain
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Consequently, in this section the average heat-transfer coefficient increases with an increase of X
/Pe’.

When X > X cr assuming for simplifying the calculations the average relative underheating to be equal
to the first term of the series in Eq. (13), we obtain
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Taking into account that
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and representing In of this value in the form of a series, after differentiation we have
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We see from the last relation that when K/(l——’fo) zoz% (afnax =2.4048) the value dk/d(X/Pe") < 0

and consequently an increase of X/Pe' in this section leads to a decrease of the average heat-transfer coef-
ficient for the entire jet.

Thus the analysis permits the conclusion that in the majority of practically possible cases of interest
for applica_tion the maximum possible heat-transfer coefficient is attained when X =X, .. and a further in-
crease of X leads to a decrease of the heat-transfer coefficient.

A decrease of the heat-transfer coefficient with an increase of length was obtained in experiments
conducted on water vapor by Zinger [3], since they were conducted when X > Xcr'

NOTATION
4 is the relative underheating of jet;
k is the heat transfer coefficient;
i is the specific vapor flow rate referred to the jet surface;
q is the specific quantity of heat liberated during condensation of vapor on the jet surface;
Ty and T, are the stagnation temperature and critical temperature, °K;
T, Tgur, and Tgy are the temperature of jet respectively at any point, of the surface, and the mean-
integral in cross section, °K;
rg and d, are the jet radius and diameter;
X is the coordinate along the jet;
C andy are the heat capacity and specific weight of working body of jet;
A and At are the thermal conductivity and turbulent thermal conductivity of working body of jet;
Pe = (wyCy/A) 4, is the Peclet number;
Wy is the velocity of jet.
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